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Abstract—We investigated the benefit of incorporating a neg-
ativity penalty into a least-squares criterion used to reconstruct
3-D radiotracer distributions in cardiac SPECT studies. B-spline
spatial basis functions were used to provide a continuous model
for the 3-D tracer distribution. Spline coefficients that tended
to have negative values were identified and were constrained to
stay near zero with use of a quadratic penalty that penalized
nonzero contributions to the projection data model. To test the
method we used trilinear B-splines to reconstruct volumetric
images for a 99mTc-sestamibi cardiac SPECT/CT patient study.
Spline coefficients were estimated by minimizing a least-squares
criterion by direct matrix inversion via Cholesky decomposition.
Volumetric images were reconstructed both with and without
the negativity penalty, using (1) a higher-resolution spline basis
and (2) a multiresolution basis composed of higher-resolution
splines in the heart volume and lower-resolution splines else-
where. Reduced image noise and good myocardial resolution
were obtained with use of the multiresolution basis. Use of
the penalty dramatically reduced image noise for the higher-
resolution basis and yielded good resolution throughout the body.
Encouraged by these results, we are using multiresolution 4-D
spatiotemporal B-splines and penalized weighted least-squares
inversion to reconstruct dynamic SPECT data from rest/stress
cardiac patient studies.

Index Terms—Penalized least-squares, SPECT/CT, fully three-
dimensional reconstruction, B-spline basis functions.

I. INTRODUCTION

WE investigated the benefit of incorporating a negativity
penalty into a least-squares criterion used to recon-

struct 3-D radiotracer distributions in cardiac single-photon
emission computed tomography (SPECT) studies. B-spline
spatial basis functions were used to provide a continuous
model for the 3-D tracer distribution [1]. Spline coefficients
that tended to have negative values were identified with
use of an iterative algorithm that converged quickly. These
coefficients were then constrained to stay near zero with use
of a quadratic penalty that penalized nonzero contributions to
the projection data model.
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This approach is motivated by goals of achieving a well-
posed image reconstruction problem and computational ef-
ficiency. To test the method we used trilinear B-splines to
reconstruct volumetric images for a 99mTc-sestamibi cardiac
SPECT/CT patient study. Attenuation and depth-dependent
point response were modeled. Volumetric images were recon-
structed both with and without the negativity penalty, using
(1) a higher-resolution basis composed of more-spatially-
compact splines and (2) a multiresolution basis composed of
more-spatially-compact splines in the heart volume and less-
spatially-compact splines elsewhere. Reduced image noise and
good myocardial resolution were obtained with use of the
multiresolution basis. Use of the penalty dramatically reduced
image noise for the higher-resolution basis and yielded good
resolution throughout the body.

II. REGULARIZED LEAST-SQUARES RECONSTRUCTION
WITH NEGATIVITY PENALTY

A SPECT projection data model that relates detected events
to a spatial B-spline representation of the 3-D radiotracer
distribution can be written as

p = Fa, (1)

where p is an I-element column vector of modeled projection
values, F is an I × M system matrix, a is an M -element
column vector of spline coefficients, I is the total number of
projection measurements acquired by the SPECT detector(s),
and M is the number of spline basis functions spanning
the image volume to be reconstructed. The system matrix
F incorporates physical effects such as attenuation, depth-
dependent collimator response, and scatter that affect detection
of gamma rays emitted by the radiotracer distribution.

At the outset, the least-squares criterion to be minimized,
χ2, is simply the sum of squared differences between the
measured projections, p∗, and the modeled projections:

χ2 = (p∗ − Fa)T(p∗ − Fa), (2)

where the superscript “T” denotes the matrix transpose. Min-
imizing the criterion χ2 yields an estimate, â, of coefficients
for the spline basis functions that represent the 3-D radiotracer
distribution:

â = (FTF)−1FTp∗. (3)

The corresponding minimum value for the criterion χ2 is

χ2
min = (p∗ − Fâ)T(p∗ − Fâ). (4)
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Generally speaking, some of the coefficients in the estimate
â may have relatively large negative values, particularly for
very noisy projection data measurements p∗. To constrain
these non-physiological values we wish to add a term to
the criterion χ2 that penalizes negative values. Insight into
what a reasonable penalty term might be can be obtained by
expressing χ2 in terms of its minimum value:

χ2 = (p∗ − Fa)T(p∗ − Fa)
= [(p∗ − Fâ)− F(a− â)]T[(p∗ − Fâ)− F(a− â)]
= χ2

min − 2(p∗ − Fâ)TF(a− â) + (a− â)TFTF(a− â)
= χ2

min + (a− â)TFTF(a− â).
(5)

Note that the term in eqn. (5) that is linear with respect to
(a− â) vanishes (i.e., the model error p∗−Fâ lies in the null
space of the backprojection operator FT).

Examining eqn. (5), one sees that deviation of a away from
â increases χ2 by an amount (a− â)TFTF(a− â). To mimic
this effect for purposes of constraining negative values, we
now define the criterion, ψ2, which adds a term to χ2 that
penalizes deviations of certain elements of a away from zero:

ψ2 = χ2 + aTNFTFNa, (6)

where the M × M matrix N is a diagonal matrix whose
(m,m)-th element is one if the penalty is to be applied to
the m-th element of a, or is zero if the penalty is not to be
applied to the m-th element of a. In essence, the additional
term penalizes nonzero contributions to the projection data
model resulting from the forward projection, FNa, of spatial
spline basis functions whose coefficients are flagged by the
diagonal elements of N.

Thus, if the matrix N is properly defined the criterion ψ2

tends to drive coefficients of â, which would be negative
without the penalty, closer to zero. Note that there is no
arbitrary multiplicative scaling factor (i.e., hyperparameter)
applied to the penalty term, as the term appears to be already
properly scaled with respect to χ2 by virtue of eqn. (5).

Given the matrix N, the criterion ψ2 is minimized by

ã = (FTF + NFTFN)−1FTp∗. (7)

The matrix N can be defined and a penalized least-squares
estimate ã can be obtained in a few iterations as follows:

1) Initialize N to be a zero matrix.
2) Minimize the criterion χ2 in eqn. (2) via direct matrix

inversion [eqn. (3)] to obtain the estimate â.
3) Set diagonal elements of N corresponding to negative

elements of â to one.
4) Minimize the criterion ψ2 in eqn. (6) via direct matrix

inversion [eqn. (7)] to obtain an estimate ã.
5) Set diagonal elements of N corresponding to negative

elements of ã to one, if they are not already one. Once
a diagonal element of N has been set to one, it should
remain at one even if the corresponding element in ã
swings positive.

6) Repeat steps 4 and 5 until the matrix N does not change.
The resulting estimate ã is the “final” estimate.

For the 99mTc-sestamibi cardiac SPECT/CT patient study
described in Section IV, the matrix N converged in 4–7
iterations of steps 4 and 5. Inversion of the symmetric, positive
definite matrices in eqns. (3) and (7) can be accomplished
relatively quickly and robustly with use of Cholesky decom-
position [2].

III. PROPERTIES OF UNIFORM B-SPLINES

Use of splines and other “blob”-like basis functions in
tomographic image reconstruction has been an active area of
research (e.g., [3]–[5]), as has been use of multiresolution
reconstruction grids (e.g., [6]).

The kth-order uniform B-spline basis function, Π∗k(x), is
the piecewise (k− 1)st-degree polynomial that is obtained by
convolving the rectangle function

Π(x) =

{
1 x ∈

[
− 1

2 , 1
2

)

0 otherwise
(8)

with itself k − 1 times (Fig. 1) [7], [8]. The Gaussian is
obtained in the limit as the order k approaches infinity. The
function Π∗k(x) has a support of width k, a standard deviation
of

√
k/12, and unit integral (i.e.,

∫∞
−∞Π∗k(x)dx = 1). The

appropriately scaled function having a support of width ak, a
standard deviation of a

√
k/12, and unit integral is 1

aΠ∗k
(

x
a

)
,

for a > 0. The Fourier transform of 1
aΠ∗k

(
x
a

)
is sinck(as).

The support of the kth-order uniform B-spline basis function
1
aΠ∗k

(
x
a

)
can be doubled simply by taking a linear combina-

tion of k + 1 shifted versions of itself:

1
2a

Π∗k
( x

2a

)
=

1
2k
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(
k

j

) [
1
a
Π∗k

(
x

a
+

k

2
− j

)]
. (9)

Thus, in tomographic imaging the forward-projection matrix
for lower-resolution splines is just a linear combination of the
columns of a matrix for higher-resolution splines [1].

IV. 99MTC-SESTAMIBI CARDIAC SPECT/CT
PATIENT STUDY

For computational simplicity, we used separable, trilinear
B-spline spatial basis functions [i.e., products of the form
Π∗2(x)Π∗2(y)Π∗2(z)] to reconstruct volumetric images for a
99mTc-sestamibi cardiac SPECT/CT patient study. Because the
B-splines overlap one another in all three spatial dimensions,
a fully 3-D reconstruction must be performed.
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Fig. 1. The kth-order uniform B-spline is obtained by convolving the
rectangle function with itself k − 1 times.
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A. SPECT/CT Data Acquisition
Emission data were acquired with use of parallel-hole

collimators on a dual-head GE Millennium VH Hawkeye
SPECT/CT scanner. A 30 min dynamic scan was performed,
with the patient’s arms down for comfort, subsequent to phar-
macologically induced stress as part of a rest/stress protocol.
During the scan, the gantry performed 24 360-degree rotations,
acquiring 72 views per rotation at 1 sec per view. Projections at
each view were binned into frames of 64×64 pixels, with pixel
size 8.84 mm × 8.84 mm. For this investigation, data acquired
2.4–30 min post-injection (i.e., during the last 22 rotations)
were summed to obtain a static dataset. Volumetric images
were reconstructed from projections of the heart obtained in
64 (transverse) × 9 (axial) sub-frames of the 72 views, which
contained a total of about 6.8 million detected events (Fig. 2).
An X-ray CT scan was performed with use of the integrated
Hawkeye system to obtain an attenuation map (Fig. 3).

B. B-Spline Image Space Models
A higher-resolution model for image space composed of

more-spatially-compact B-splines was obtained by first thresh-
olding the attenuation map to obtain a mask for the patient’s
body and the bed. The volume encompassed by the mask
was then spanned by 7659 overlapping trilinear B-splines
organized on a 63×63×5 rectangular grid having a spacing
of 8.84 mm × 8.84 mm × 17.7 mm along the x-, y-, and
z-axes, respectively, where x and y are transverse coordinates
and z is the axial coordinate. The overlapping splines had a
support of 17.7 mm × 17.7 mm × 35.4 mm along x, y, and
z, respectively.

A multiresolution spatial model was obtained by first dou-
bling the transverse support of the higher-resolution splines
via eqn. (9) and downsampling in the transverse plane. This
yielded a total of 2201 overlapping trilinear B-splines or-
ganized on a 31×31×5 rectangular grid having a spacing
of 17.7 mm × 17.7 mm × 17.7 mm along x, y, and z,
respectively. The overlapping splines had a support of 35.4 mm
× 35.4 mm × 35.4 mm along x, y, and z, respectively. A
6×6×5 neighborhood of lower-resolution splines that spanned
the heart volume was then replaced with an 11×11×5 neigh-
borhood of higher-resolution splines, to obtain a total of 2626
spatial basis functions.

C. Projection Data Models, Penalized Least-Squares Mini-
mization, and Reconstructed Images

For the higher-resolution spatial basis, a system model
that related spatial spline intensities to detected events was
calculated with use of a fully 3-D ray-driven projector [9]
that modeled depth-dependent collimator response, as well as
attenuation based on the measured attenuation map. Scatter
was not modeled. This resulted in a projection data model
Fa = p, where F is a 34472×7659 system matrix, a is a
7659-element column vector of spline coefficients, and p is a
34472-element column vector of modeled projection values.

Using a dual-processor 2.5-GHz PowerPC G5 Macintosh
with 8 GB of memory and MATLAB software, the penal-
ized least-squares volumetric image reconstruction took about

Fig. 2. Anterior view of summed late projection data from a 99mTc-sestamibi
cardiac SPECT patient study. Gray lines depict the 8 cm axial extent of
the volume in which the radiotracer distribution was estimated via fully 3-D
reconstruction.

Fig. 3. Smoothed attenuation map for a transverse mid-ventricular slice
acquired by the integrated Hawkeye X-ray CT system.

9 cpu-min and involved seven iterations of steps 4 and 5 in the
algorithm described in Section II (i.e., a 7659×7659 matrix
was inverted eight times). Post-reconstruction smoothing was
performed in transverse planes with a separable 3×3 filter
that smoothed spline coefficients with a [1/4 1/2 1/4] kernel
first along the x-axis and then along the y-axis. Rows 1
and 2 of Fig. 4 show transverse cross-sections through the
3-D image volume reconstructed without use of and with
use of the negativity penalty, respectively. Use of the penalty
dramatically reduced image noise for the higher-resolution
basis and yielded good resolution throughout the body (row 2).

For the multiresolution spatial basis, the penalized least-
squares volumetric image reconstruction took only about
0.8 cpu-min and involved four iterations of steps 4 and 5
in the algorithm described in Section II (i.e., a 2626×2626
matrix was inverted five times). Post-reconstruction smoothing
in transverse planes was performed only on higher-resolution
spline coefficients in the heart volume with a separable 3×3
filter that smoothed with a [1/4 1/2 1/4] kernel first along the
x-axis and then along the y-axis. Rows 3 and 4 of Fig. 4
show transverse cross-sections through the 3-D image volume
reconstructed without use of and with use of the negativity
penalty, respectively. The negativity penalty had only a subtle
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Fig. 4. Transverse cross-sections through the 3-D image volume modeled with higher-resolution splines (rows 1 and 2) and multiresolution splines (rows
3 and 4) and reconstructed without use of (rows 1 and 3) and with use of (rows 2 and 4) the negativity penalty. Use of the penalty dramatically reduces
image noise for the higher-resolution splines and yields good resolution throughout the body (row 2). The negativity penalty has only a subtle effect for the
multiresolution splines (row 4), as noise is already well-controlled by the lower-resolution splines used to model the volume outside the heart (row 3).

effect (row 4), as noise was already well-controlled by the
lower-resolution splines used to model the volume outside the
heart (row 3)

V. CONCLUSION

A negativity penalty was straightforwardly introduced into
a fully 3-D least-squares SPECT image reconstruction al-
gorithm. Use of the penalty dramatically reduced noise and
yielded good spatial resolution for an image volume that was
modeled with higher-resolution B-spline spatial basis functions
and was reconstructed by direct matrix inversion via Cholesky
decomposition.

Encouraged by these results, we are using multiresolution
4-D spatiotemporal B-splines and penalized weighted least-
squares inversion to reconstruct dynamic SPECT data from
rest/stress cardiac patient studies.
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